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1 Conditional independence and determinism
Exercise 1.1. Show that if a joint morphism h : A → X ⊗ Y decomposes as a product,

h

X Y

A

=

A

X Y

f g

then it is the product of its marginals, i.e.

h

X Y

A

=

A

h

X

h

Y

Exercise 1.2. Show that the deterministic morphisms of FinStoch are exactly the matrices with
only entries 0 and 1.

For people who know some measure theory: what is the analogous statement in Stoch?

Exercise 1.3. Prove that for a Markov category C, the following conditions are equivalent.

(i) Every morphism is deterministic;

(ii) The copy maps are the components of a natural transformation (between which functors?);

(iii) C is cartesian monoidal.

Hint: show that if a morphism h : A → X ⊗ Y is deterministic, then it is always making X and
Y conditionally independent given A.

Exercise 1.4 (bonus). Show that the conditions of the previous exercise are also equivalent to the
following.

(iv) Every joint morphism h : A → X ⊗ Y makes X and Y conditionally independent given A.
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2 Almost-sure equality and conditionals
Exercise 2.1. Show that in FinStoch, given a state p : I → X and morphisms f, g : X → Y , we
have that f = g p-almost surely if and only if the set

{x ∈ X : f(x) ̸= g(x)}

has p-measure zero.
If you have a background in measure theory, show that the same is true in BorelStoch.

Exercise 2.2. Suppose that the following conditional distribution exists.

p

X Y

=

p

X Y

p|X

Show that any (other) morphism f : X → Y is a conditional of p given X if and only if it is
pX -almost surely equal to p|X , where pX denotes the following marginal.

p

X

Exercise 2.3. Suppose that a Markov category C has conditional distributions. Prove the equality
strengthening property, namely that if

p

X Y

f

p

X Y

g
=

then we also have the following stronger condition.

p

X Y

f

p

X Y

g
=

E E

Exercise 2.4. Use the previous exercise to show that composition in the category ProbStoch(C) is
well-defined.
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Exercise 2.5 (bonus). For people who know dagger categories: show that if C has conditional
distributions, ProbStoch(C) is a monoidal dagger category.

Exercise 2.6 (bonus). For people who know lenses: construct a “forgetful” retrofunctor (a.k.a. co-
functor) ProbStoch(C) → C.

3 Monads and Kolmogorov products
Exercise 3.1. Let (D,×, 1) be a cartesian monoidal category. Let (P, µ, η,∇) be a monad on D
which is

• Affine, i.e. P1 ∼= 1,

• Monoidal, or commutative, with structure maps

PA× PB P (A×B)∇

satisfying the usual associativity and unitality conditions.

Show that the Kleisli category of P is canonically a Markov category, with the copy and discard
maps induced by those of C.

Exercise 3.2. For people who know measure theory: show that Stoch is the Kleisli category of the
Giry monad on the category Meas of measurable spaces and measurable maps.

Hint: why is a Markov kernel a Kleisli morphism?

Exercise 3.3. Let C be a Markov category constructed as in Exercise 3.1. Prove that sampling
from a product distribution yields the same result as sampling from the factors independently:

PX ⊗ PY P (X ⊗ Y )

X ⊗ Y

samp⊗samp

∇

samp

Exercise 3.4. Prove that a Kolmogorov product
⊗

i∈I Xi in a Markov category C reduces to the
cartesian product

∏
i∈I Xi if we restrict to the category Cdet of deterministic morphisms.

Question 3.5 (research-level). For people who know measure theory: a measure is called s-finite
(not to be confused with σ-finite) if it can be written as a countable sum of finite measures. Do
s-finite measures form a monad, analogous to the Giry monad? If so, does the monad restrict to
the category of standard Borel spaces?
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